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Field in Single-Mode Helically-Wound
Optical Fibers

XI-SHENG FANG AND ZONG-Q1 LIN

Abstract —The scalar field wave equations of the fundamental mode in

single-mode helically-wound optical fibers with circular cross section are

obtained by using the Maxwell equations in the local orthogonal curvilinear

coordinate system introduced by Tang. Two important results are brought

about 1) The field in the above-mentioned fibers maintains a quasi-linear

state of polarization while its orientation rotates with a rotation rate close

to – ~ with respect to the Serret-Frenet frame. 2) The state of polariza-

tion (SOP) of the above field changes periodically afong the propagation

distances from 1 to a value a little less than 1, and, for a fized s, it changes

periodically according to the incident polarized angles with a period 7r/2.

The theoretical results have been verified by the experimental measure-

ments.

1. INTRODUCTION

F IELDS IN HELICALLY-WOUND optical fibers were

studied experimentally by Papp and Harms [1]. Ross

induced the experimental results to an empirical axiom [2].

However, reports concerning the solutions of the Maxwell

equations in a helically-wound optical fiber have not been

seen in the literature. A general form of the Maxwell

equations in a helical system was first setup by Sollfrey [3].

It tends to be troublesome to treat the equations exactly

due to its nonorthogonality. In differential geometry, the

Serret–Frenet frame is generally used. Yet, this frame is

also nonorthogonal insofar as the torsion is not equal to

zero [4]. Based on this frame, Tang introduced a derived

system—Tang’s coordinate system [5]. It is a local curvi-

linear orthogonal system of space, in which the field equa-

tions in a helically-wound waveguide have a compact form

for perturbation analysis. This paper discusses the Maxwell

equations and the scalar field wave equations of helically-

wound optical fibers in Tang’s coordinate system. Two

important results are brought about: 1) The field in the

above fibers maintains a quasi-linear state of polarization

while its orientation rotates with a rotation rate close to
— ~ with respect to the Serret–Frenet frame. 2) The state

of polarization (SOP) of the above-mentioned field changes

periodically along the propagation distance s from 1 to a
value a little less than 1, and, for a fixed s, it changes

periodically according to the incident polarized angles with

a period n-/2.
The above conclusions have been verified by the experi-

ments of Papp and Harms [1].
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Fig. 1. Geometry and coordinate systems of a helically-wound optical
fiber,

II. THE FIELD EQUATIONS IN TANG’S COORDINATE

SYSTEM AND THE ZERO-ORDER APPROXIMATIC

SOLUTIONS

Fig. 1 shows the geometry of a helically-wound optical

fiber. R o is the radius of the cylinder and a the radius of

the fiber core with

Ro>>a. (1)

The center line of the fiber is a right circular helix, while

27rB and u are its pitch and pitch angle. respectively, s is

the arc length, x and r are the curvature and torsion, such

that

X= RO/(R; +B2) ~= B/( R:+B2) (2)

T/x = B/Ro= taIIU. (3)

The unit vectors along the tangent t,the principal normal

n, and the binormal b of a point O’ on the helix constitute

the Serret–Frenet frame (O’ – a,, an, ah), which is nonor-

thogonal for points off the curve due to the effect of the

torsion [4]. Tang has conceived a derived system which

rotates with a rotation rate – ~ with respect to the

Serret–Frenet frame [5]. Denote the new system by vectors

a,, am, ap, and let the angle between a. and a ~ be I) as
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Fig. 2. The Serret–Frenet frame and Tang’s coordinate system.

shown in Fig. 2, such that

a,=at

am = a.cos++a~sinrj

ap=–afisin++apcos$ (4)

where

d+(s)
—=—r.

ds

For the helix, we have

(5)

+=- Bs/’(R:+B’). (6)

Tang proved that the new system is orthogonal with its

metric coefficients

h~=hP=l h,=l–x(mcos $–psin~). (7)

By changing from (m, p) to polar coordinates (r, 0)

m=rcos O p=rsin( (8)

the corresponding metric coefficients become

hr=l h~=r h,=l– Xrcos(~+ O). (9)

In Tang’s coordinate system, the electric- and magnetic-field

vectors E and H can be written in the forms

E = Emam + Epap+ E,a8

H= Hmam + Hpap + H,a$. (lo)

NOW we investigate the electric-field vector wave equation

(v’+rr’k:)E=o (11)

where n is the refractive index and k o the wavenumber in

free space. Using the vector identity

V2E=V(VOE)– VX(VXE) (12)

(11) can be rewritten in the scalar-field form. After labori-

ous but straightforward calculations, the transverse elec-

tric-field equations

[(v2+n2kj)E]~=0 [(y2+n2ki)E]P=0

(13)

become

[(d’/am’ + d2/8p2 + h;2i12/as2 + n’k~)

+X(–cos$i3/am +sin#a/ap]hyl

+X2( –cos2+h~2+ tanu(msin~+pcos~)

.h~3il/i3s)]E~ + X2sin2~h~2EP/2

+ [2xh;2cos~a/as +X2tanuh~2sin~

+X3tanuh~3(m sin~+pcos+)cos +] E,=0

(14)

[(t12/am2 + a2/ap2 + h;2a2/as2+ n’k~)

+x(–cos+a/am +sin~a/ap)h; l

+X2(–sin2+h~2 +tanu(nzsin ++pcos~)

.hj3a/as)]EP + X2sin2~h~2E~/2

+ [–2Xh~2sinya/as + x’tanuh~’cosl

–X3tanuh~3(m sin~+pcos ~)sin+]E~ =0.

(15)
Under the basic assumption

Ro>>a Xa<<l ra <<l (16)

it is obvious that the transverse coupling between Em and

Ep is of order (xa)’, and the effect of coupling will not

accumulate along the propagation distance s since the

coupling coefficient is [sin 2i)/2h,](xa)2.
Assume that the fibers are weakly guided, i.e., A<< 1, the

longitudinal electric field E, is of order Al/’ of the trans-

verse electric field [6] with A equal to (~? – n ~)/2n ?. The

zero-order approximation equations of (13) and (14) will

be

[V~+n2k~-l%]Eo~=0 (17)

[v:+ n’ki -Bj]EOp =0 (18)

where Eom and EOP are the zero-order field components Of

Em and Ep, while Do is the zero-order propagation con-

stant, V; is the trmsverse Laplacian

V:= [a2/ap2 + a/p ap+ a2/p2 ad2]\a2 (19)

with the normalized radial coordinate

p= r/a. (20)

The solutions of (17) and (18) with the boundary condition

of the optical fiber are the same as that of straight fiber.

They tend to be linear polarized waves with fixed orienta-

tion of polarization with respect to Tang’s coordinate

system, and the field amplitude distribution agrees with

that of straight optical fibers. This conclusion has been

verified by the experimental results of Papp and Harms [1].
In their experiment, a linear polarized light was launched

into a helically-wound liquid-core optical fiber with its

pitch angle o equal to 7r/4. The polarized angle of the
output wave at a distance one turn from the input end was

found to be shifted with respect to the Serfet–Frenet frame

by an angle of – 254°, which is consistent with (6). In fact,
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for u = n/4, B = RO, and s = 23/27rR0, # = – Bs/(R~ +
Bz) = – 21127 = – 2540.

III. THE MODAL ASSUMPTION AND THE

PERTURBATION ANALYSIS OF THE FIELD AND

PROPAGATION CONSTANTS

The above analysis shows that the field in a helically-

wound optical fiber has a tendency to keep its propagation

orientation with respect to Tang’s coordinate system. So,

for further analysis of the field by a perturbation method, a

proper modal assumption should be chosen on the basis of
Tang’s coordinate system, i.e., all the subsequent analyses

are based on the Maxwell equations in Tang’s coordinate

system, while the field components of the scalar wave

equations should be the components in that system.

In using the perturbation analysis, the first-order field

deformation causes the second-order propagation constant

correction, which is similar to the case of the birefringence

induced by the curved waveguide geometry in pure bend-

ing ( T = O) optical fiber [7]. This effect will accumulate

along the propagation distance s. The correct perturbation

analysis depends on the pertinent modal assumption, which

is determined by the boundary conditions of the field

equations. In the case of pure-bending optical fibers, the

two orthogonal linearly polarized waves of the fundamen-

tal mode are parallel to a* and a ~. When ~ is not equal to

zero, the unit vectors a ~ and up rotate with a rotation rate
— r with respect to a ~ and a ~. We can define the propa-

gation constants ~~ and ~~ of the two linearly polarized

modes with field components Em and EP at those points

along the fiber where a ~ and up coincide with a. and a ~,

respectively. In the general case, i.e., on other points where

a ~ and up do not coincide with a. and a ~, the field must

be split into the two states of linear polarization with their

orientations parallel to a ~ and a ~. They propagate with

two different propagation constants PH and /36.

Assume E; and ~~ are the distribution functions of the

fundamental mode fields along the direction a ~ and up at

those points where a ~ and up coincide with a ~ and a ~,
respectively; the field components can then be written in

the form

l?; exp(- j&s)= (13~m+cE~m+ . ..)exp(– j&s)

(21)

-( Eb+cE;p +... ) exp(- jB,s)Ebexp(– jflbS)– Op
P

(22)

PJ??=%[l +132n~2+”’”1 (23)

B:=%ll+pzbcz+ ”””] (24)

with

e = 2fi~a2~a. (25)

The longitudinal components of the electric field have the

form E: exp ( – j&s) and E~exp ( – jf3~.s). The modal as-

sumptions (21)–(24) imply that the orientation of E; and

E; are fixed with respect to am and up with ~ equal to

2k7r(k=o, +1, +2,... ). From (14) and (15), E: and E:

should satisfy the following equations:

az(v~ + nzkj –13.2/h~)E~ =Xa[(cos8il/dP

–sinOd/p 13d)E#/h, +2j/30aE~/h~] +O[(Xa)2] (26)

a2(v~+n2k~ -B~/t’z~)Ej=xa[ (cosOil/dp

–sin8d/P ~8)E~/h,] +O[(Xa)2]. (27)

Substituting (21)–(24) into (26) and (27) and equating the

power of c, two sets of equations for the term E& and E~p

can be obtained. The zero-order equations are the same as

(17) and (18), and the first-order equations are

a2[V~+n2k~–~;]Ef~=pEo~cos0

+ (COS 9 i3Eo~/dp – sin O8Eow/p de + 2 j/30aEo, )/2~~az

(28)

a2[V?+n2k~-B~]Efp= pEoPcos0

+ (COS6 dEoP/dp – sin9 ilEoP/p W3)/2~~a2. (29)

Eo, on the left side of (28) can be obtained through the

Maxwell equations in Tang’s coordinate system. Here we

omit the upper suffixes n and b of the zero-order field

functions as they are not restricted by (21)-(24). For

simplification, we consider only optical fibers with the step

refractive index

(nl, (P<l)n=

nz, (p>l)”
(30)

Applying the boundary condition of the weakly-guided

optical wave, the normal parameters are determined

~= a(n~k~ ‘&?)l’2 ~= a(% - n~k~)l”. (31)

From (17) and (18), the zero-order field solutions are

E7~) = @;) =
{

Jo(up)/Jo(u), (P<l) (32)
Ko(wp)/Ko(w), (P>l)

E;:) = E$’) = (). (33)

From (28) and (29), we obtain the first-order field solutions

/

[-(- p2/4u+Cl)Jl(up) +3pJo(up)/4B~a2]

E;;m) = .cos8/Jo(u), (P<l)

[-( P2/4W2 + cl.)Kl(UP)+sp~O(~P)/4B~a2]

.cos6/Ko(w), (P>l)

(34)

I

[-(-p2/4u+C’,)J, (up)+ pJO(up)/4Pja2]

F$; P) =
.cose/Jo(u), (P<l)

[-(- P2/4w2 + c,,)Kl(Up)+plCo(up)/4B~a2]

OcosO/Ko(w), (P>l)

(35)

E::) = E&)=() (36)
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with c1 and cl. given by the boundary condition

cl= K2(w)/4uKo(w) cl, = J2(u)/4w.Jo(u).

(37)

The upper suffixes (m) and (p) correspond to the linear

polarized fundamental modes HE\~) and HE~f).

Assume Am is a circle with its origin O’ at the center of

the cross section and a large radius (e.g., r = 100a) in the

cross-sectional plane. Carrying out the integration

/[ E~tm) X (18)– I&X (26)] ti
A.

and

/[ E;@) X (17) - EOPX (27)] dA
A-

&n and B2b can be obtained after using Green’s integral
theorem. Finally, we yield [7]

A/3 = ~~ – & = @~(Xa)2(& – ~2.)/zi30

~ (X42~o[l/6+(u2 - w2)/3z42w2 + .lo(u)/3z4(z4].

(38)

This is the birefringence due to the waveguide geometry

effect. When stress-induced birefringence is considered, A~

can be calculated according to the conventional formula.

Now the electric-field components Em and Ep can be

investigated in the general case. The anaIysis is ho-

mologous to the method used in analyzing the twisted

linear birefringent fibers.

Two coordinate systems are used to discuss twisted

linear birefringent fibers. The first is a fixed orthogonal

system x, y, z with the corresponding unit vectors being

a a ~, and a,. The Maxwell equations in this system have

a’~imple form. The second is a rotating nonorthogonal

system x’, y’, z with its unit vectors a ~, and up, parallel to

the axes of the local elliptical cross section of the fiber. In

the latter system, the Maxwell equations tend to be quite

tedious due to the nonorthogonality of the system. The

coordinates x’ and y’ rotate with a twist rate a with

respect to the coordinates x and y along the propagation

distance z [8]. The transverse field E, at a point of distance

z in the fiber can be split into two components parallel to

ax, and a ~, at that point (as shown in Fig. 3)

Et = Exax + Eyay = Extax, + Eytay, (39)

[1[Ex, Cosa!z sin az Ex

Eyt = – sin az
1[ 1E“Cos az ~

(40)

These two components propagate a small distance Az

along z with the two different propagation constants of the
linear birefringent fiber in the coordinate system x, y, z;

then they should be transformed back to the components

of the x and y system. Here, a plane-wave approximation

is used because of the weakly-guiding wave.

Now two coordinate systems are used in helically-wound

optical fibers. The first is Tang’s orthogonal coordinate

system m, p,s. The Maxwell equations and the scalar field

Fig. 3. Fixed and rotated coordinate systems of a twisted optical fiber.

wave equations in this coordinate system have a simple

form. The second is the fixed nonorthogonal system n, b,s.

The Maxwell equations in the latter system will be quite

tedious. The coordinates n and b rotate with a rotation

rate ? with respect to the coordinates m and p along the

propagation distance s. The transverse field E, at a point

of distance s in the fiber can be split into two components

parallel to a. and a ~ at that point

E,= AmEmaM + ApEpap = A~E~a~ + AbE~ab (41)

[HA. Cos+ 1[1–sin+ Am

A~ = sin+
(42)

cos ~ Ap “

These two components propagate a distance As along s

with the two propagation constants of the eigenpolariza-

tion modes in bending linear birefringent fiber in the

Tang’s coordinate system m, p,s; then they should be

transformed back to the components of the m and p

system. Here, an approximation of the first-order field

amplitude is used. However, the second-order difference

between two propagation constants has been taken into

account, so we have

[

Cos + I 1–sin$ Am
x (43)

sin * cos~+ AP “

Using (42), (43) becomes

dA. /ds = – jB.Au + rA~

dAb/ds = – jP~A~ – 7A.. (44)

Solutions of (44) can be obtained straightforwardly by the

Laplace transform [9]

A.(s) = [fcos(ns/F1/2)+ F’z2( j~A~/2~ + g)

. sin ( m/Fl/2)] exp ( – jll~s) (45)

A,(s) = [gcos(m/’Fli2)– Fl/2(jgA~/2~ +~)

. sin ( rs/F1fz )] exp ( – j~~s ) (46)

where

f=i4ml,=o g= A,l.=o F= [l+(A~/27)2] ‘1

*=0 +=0

k?14=(~.’+/ %)/20 (47)
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If A6 << ~, the above field components represent a

quasi-linear state of polarization, while its &-ientation

rotates with a rotation rate close to – r with respect to the

Serret–Frenet frame.

The solutions (45) and (46) can be used directly to give

the state of polarization (SOP) P, or the polarization

ellipticity of a polarized wave at the output end of the fiber

I – Itin
P= ‘=

I ~= + Imin {[= cos sin ( – A/3 F1/2/r ) sin ( rs/F1/2 )

~(sin2q cos(~s/F1/2)

- F1/2~os2psin(~s/Fli2)] ]

(48)

where 1~= and Imin are the maximum and minimum

intensities passing through an analyzer whose direction can

be adjusted, and ~ is the input polarization angle with

respect to the Serret–Frenet frame [10].

When

q’=rf+T/2 (49)

there is
. PAP. (50)

It proves that P relates to the input polarization angles.

When the input polarized angle ~ changes, P changes

periodically with a period ~/2 at a fixed distance s. This i~

in agreement with the experimental results of [1]. .’.J the

ellipticity of the output wave is very close to 1, we call it

quasi-linear polarization. In fact, from (48), it can be seen

that for a small A~, P approaches 1.

IV. CONCLUSION

A perturbation method is used to solve the Maxwell

equations in Tang’s coordinate system. The first-order field

deformation and the second-order corrections of the prop-

agation constants in single-mode helically-wound optical

fibers are obtained. The theoretical analysis proves that the

field in the fibers maintains a quasi-linear state of polariza-

tion, while the orientation of the polarization rotates with a

rotation rate close to – ~ with respect to the Serret–Frenet

frame. The state of polarization periodically changes

according to the incident polarized angles with a period

n/2 at a fixed distance s. Our results have been verified by

the experimental results of [1].
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