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Field in Single-Mode Helically-Wound
Optical Fibers

XI-SHENG FANG anp ZONG-QI LIN

Abstract —The scalar field wave equations of the fundamental mode in
single-mode helically-wound optical fibers with circular cross section are
obtained by using the Maxwell equations in the local orthogonal curvilinear
coordinate system introduced by Tang. Two important results are brought
about: 1) The field in the above-mentioned fibers maintains a quasi-linear
state of polarization while its orientation rotates with a rotation rate close
to — 7 with respect to the Serret—Frenet frame. 2) The state of polariza-
tion (SOP) of the above field changes periodically along the propagation
distances from 1 to a value a little less than 1, and, for a fixed s, it changes
periodically according to the incident polarized angles with a period /2.
The theoretical results have been verified by the experimental measure-
ments.

I. INTRODUCTION

IELDS IN HELICALLY-WOUND optical fibers were
studied experimentally by Papp and Harms [1]. Ross
induced the experimental results to an empirical axiom [2].
However, reports concerning the solutions of the Maxwell
equations in a helically-wound optical fiber have not been
seen in the literature. A general form of the Maxwell
equations in a helical system was first set up by Sollfrey [3].
It tends to be troublesome to treat the equations exactly
due to its nonorthogonality. In differential geometry, the
Serret—Frenet frame is generally used. Yet, this frame is
also nonorthogonal insofar as the torsion is not equal to
zero [4]. Based on this frame, Tang introduced a derived
system—Tang’s coordinate system [5]. It is a local curvi-
linear orthogonal system of space, in which the field equa-
tions in a helically-wound waveguide have a compact form
for perturbation analysis. This paper discusses the Maxwell
equations and the scalar field wave equations of helically-
wound optical fibers in Tang’s coordinate system. Two
important results are brought about: 1) The field in the
above fibers maintains a quasi-linear state of polarization
while its orientation rotates with a rotation rate close to
— 7 with respect to the Serret—Frenet frame. 2) The state
of polarization (SOP) of the above-mentioned field changes
periodically along the propagation distance s from 1 to a
value a little less than 1, and, for a fixed s, it changes
periodically according to the incident polarized angles with
a period /2.
The above conclusions have been verified by the experi-
ments of Papp and Harms [1].
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Fig. 1. Geometry and coordinate systems of a helically-wound optical

fiber.

II. THE FIELD EQUATIONS IN TANG’S COORDINATE
SYSTEM AND THE ZERO-ORDER APPROXIMATIC
SOLUTIONS

Fig. 1 shows the geometry of a helically-wound optical
fiber. R, is the radius of the cylinder and a the radius of
the fiber core with

(1)

The center line of the fiber is a right circular helix, while
27B and o are its pitch and pitch angle. respectively, s is
the arc length, x and 7 are the curvature and torsion, such
that

Ry > a.

x=R,/(R;+B*) 7=B/(R}+B*) ()

3)

The unit vectors along the tangent ¢, the principal normal
n, and the binormal b of a point 0’ on the helix constitute
the Serret—Frenet frame (0'—a,, a,, a,), which is nonor-
thogonal for points off the curve due to the effect of the
torsion [4]. Tang has conceived a derived system which
rotates with a rotation rate — 7 with respect to the
Serret—Frenet frame [5]. Denote the new system by vectors
aga,,a, and let the angle between a, and a,, be ¢ as

7/x =B/R,=tano.
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Fig. 2. The Serret-Frenet frame and Tang’s coordinate system.

shown in Fig. 2, such that
aszat
a,=a,cosy +a,siny
a,=—a,siny +a,cosy (4)
where
dy(s)
ds

=—T. (5)
For the helix, we have

(6)

Tang proved that the new system is orthogonal with its
metric coefficients

¢ =— Bs/(R}+ B?).

h,=h,=1 h,=1-x(mcosy — psiny). (7)
By changing from (m, p) to polar coordinates (r, )
m=rcosf p=rsinf
the corresponding metric coefficients become
h,=1 hg=r h,=1—xrcos(y+8).

)

In Tang’s coordinate system, the electric- and magnetic-field
vectors E and H can be written in the forms

E=E,a,+Ea,+Ea,

(10)
Now we investigate the electric-field vector wave equation
(11)

where n is the refractive index and k, the wavenumber in
free space. Using the vector identity

H=H,a,+H,a,+Ha,.

(v2+n*k%)E=0

V2E=v(vV-E)-v X(V XE)

(12)

(11) can be rewritten in the scalar-field form. After labori-

ous but straightforward calculations, the transverse elec-

tric-field equations
[(v2+n3)E] =0 [(v?+nk3)E], =

(13)

(8)
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become
[(8%/9m? + 9%/ 3p® + h;29%/ ds* + nk})
+x(—cosyd/dm+sinyd/dp)h*
+ x2(—cos?yh; % +tano(msin + pcosy)
h;39/8s)|E,,+ x?sin2yh;2E, /2
+[2xh;2cos 8/ s + x* tanoh ?siny
+x3 tanoh 3 (msiny + pcosy)cos ¢ | E, =0
(14)
[(8%/9m? + 3%/ 3p* + h;29%/ds* + n’k})
+ x(—cosyd/dm+sinyd/dp)h;t
+x2(—sin? yh;? +tano(msiny + pcosy)
h;33/9s)| E, + x*sin2yh; ’E,, /2
+[-2xh;?
— x3tanoh;3(msing + pcosy)siny| E, = 0.

(15)
(16)

it is obvious that the transverse coupling between E,, and
E, is of order (xa)?, and the effect of coupling will not
accumulate along the propagation distance s since the
coupling coefficient is [sin2vy /2/,](xa)*.

Assume that the fibers are weakly guided, i.e., A <1, the
longitudinal electric field E, is of order AY? of the trans-
verse electric field [6] with A equal to (n? — n%)/2ni. The
zero-order approximation equations of (13) and (14) will
be

sinyd/ds + x2tanoh; >cosy

Under the basic assumption

Ry»a xa<l ma<xl

[v2+n%k;— B Egpn=0 (17)
[v2+n%3— B3| Ey,=0 (18)

where E,,, and E,, are the zero-order field components of
E, and E,, while §, is the zero- -order propagation con-
stant, v 2 1s the transverse Laplacian

v2=[8%/80*+3/pdp+8%/p?30%] /0> (19)
with the normalized radial coordinate
p=r/a. (20)

The solutions of (17) and (18) with the boundary condition
of the optical fiber are the same as that of straight fiber.
They tend to be linear polarized waves with fixed orienta-
tion of polarization with respect to Tang’s coordinate
system, and the field amplitude distribution agrees with
that of straight optical fibers. This conclusion has been
verified by the experimental results of Papp and Harms [1].
In their experiment, a linear polarized light was launched
into a helically-wound liquid-core optical fiber with its
pitch angle o equal to 7/4. The polarized angle of the
output wave at a distance one turn from the input end was
found to be shifted with respect to the Serret—Frenet frame
by an angle of —254°, which is consistent with (6). In fact,
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for o=u/4, B=R,, and 5s=2"%7R,, { =— Bs/(R%+
B?)= — 212 = — 2540,

III. THE MODAL ASSUMPTION AND THE
PERTURBATION ANALYSIS OF THE FIELD AND
PROPAGATION CONSTANTS

The above analysis shows that the field in a helically-
wound optical fiber has a tendency to keep its propagation
orientation with respect to Tang’s coordinate system. So,
for further analysis of the field by a perturbation method, a
proper modal assumption should be chosen on the basis of
Tang’s coordinate system, i.e., all the subsequent analyses
are based on the Maxwell equations in Tang’s coordinate
system, while the field components of the scalar wave
equations should be the components in that system.

In using the perturbation analysis, the first-order field
deformation causes the second-order propagation constant
correction, which is similar to the case of the birefringence
induced by the curved waveguide geometry in pure bend-
ing (7= 0) optical fiber [7]. This effect will accumulate
along the propagation distance s. The correct perturbation
analysis depends on the pertinent modal assumption, which
is determined by the boundary conditions of the field
equations. In the case of pure-bending optical fibers, the
two orthogonal linearly polarized waves of the fundamen-
tal mode are parallel to a,, and a,. When 7 is not equal to
zero, the unit vectors a,, and a, rotate with a rotation rate
— 1 with respect to a, and a,. We can define the propa-
gation constants 8, and B, of the two linearly polarized
modes with field components E,, and E, at those points
along the fiber where a,, and a, coincide with @, and a,,
respectively. In the general case, i.e., on other points where
a,, and a, do not coincide with a, and a,, the field must
be split into the two states of linear polarization with their
orientations parallel to a, and a,. They propagate with
two different propagation constants 8, and B,.

Assume E; and E: are the distribution functions of the
fundamental mode fields along the direction a,, and a, at
those points where a,, and a, coincide with a, and a,,
respectively; the field components can then be written in
the form

Epexp (= jB,s) = (Eg, + €Efy, + -+ Jexp(— jB,s)

(21)
E;exp(_ ijs)z (E(;)p+€E1bp+ e )exp(_]ﬂbs)
(22)
Bl =B3[1+ By + -] (23)
ﬁ13=1302[1+182b52+”'] (24)
with
€=2p32a’xa. (25)

The longitudinal components of the electric field have the
form Eexp(— jB,s) and E’exp(— jB,s). The modal as-
sumptions (21)—(24) imply that the orientation of E and
EIf are fixed with respect to a,, and a, with ¢ equal to
2km (k=0,+1,+2,---). From (14) and (15), E;, and E/
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should satisfy the following equations:

a?(v2+n*k2 - B2/h2)E} = xal(cos83/dp
—sina/p 86)E; /h, +2 jByaEl/h2] +0[(xa)?] (26)

a*( V2 +n’k} — B2/h2)EL = xa(cos88 /3p
—sin8d/p 00)E}/h | +0[(xa))]. (27)

Substituting (21)—(24) into (26) and (27) and equating the
power of €, two sets of equations for the term E}' and E fi
can be obtained. The zero-order equations are the same as
(17) and (18), and the first-order equations are

a?[v}+nki - BE| Ef,, = pE,, cos 8
+(cosIE,,, /p —sind IE,, /p 36 + 2 jByaE,,) /2B2a*
(28)

a?[v}+nk2 - 82 E{,=pE,,cos
+(cos AE,, /dp —sinf IE,,/p 30)/2B5a*. (29)

E,, on the left side of (28) can be obtained through the

Maxwell equations in Tang’s coordinate system. Here we

omit the upper suffixes n and b of the zero-order field

functions as they are not restricted by (21)-(24). For

simplification, we consider only optical fibers with the step
(p<1)

refractive index
{ nl |
n= .
n 2 ( P > 1)

Applying the boundary condition of the weakly-guided
optical wave, the normal parameters are determined

1/2 o712
u=a(niki—B3)" w=a(pi—n2k3)'"”.
From (17) and (18), the zero-order field solutions are
Jo(up)/Jo(u), (p<1)
Ko(wp)/Ko(w),  (p>1)
E{p) = E{M=0.

(30)

(31)

(32)

Om

E(m)=E(§II;)= {

(33)

From (28) and (29), we obtain the first-order field solutions
[=(=0?/4u+ ) i (up) + 300 (up) /483a7]

En(m)__ .Cosa/JO(u)’ (P<1)
1m
[— (92/4w2 + Cle)Kl(up)+3pK0(up)/4,802a2]
cosb/Ko(w), (p>1)
(34)
[_(“ P2/4“ + Cl)Jl(uP)‘*‘PJo(”P)/‘wozaz]
Eb(r) = ~cos6?/J0(u), (p<1)
1
7 [ (= 0%/4w> +C) K, (up)+ pKo(up) /4B2a?]
«cosb/Ky(w), (p>1)
(35)
E{’,flp) = Elbp('") =0 (36)
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with ¢; and ¢,, given by the boundary condition
¢ =Ky (w)/4uKy(w) c1.=Jy(u) /4wy (u).
(37)

The upper suffixes (m) and (p) correspond to the linear
polarized fundamental modes HE{}" and HE{P.

Assume A is a circle with its origin 0" at the center of
the cross section and a large radius (e.g., r =100q) in the
cross-sectional plane. Carrying out the integration

fA [E20™ % (18) - E,,, X (26)] dA
and
[, (B2 %7 By, x @7)]

B,, and B,, can be obtained after using Green’s integral
theorem. Finally, we yield [7]

AB=8,-B,= Boz(Xa)z(,sz - an)/zﬁo

= (xa) Bo[1/6+ (u? = w?) /3uw? + J(u) /3uty(u)].
(38)

This is the birefringence due to the waveguide geometry
effect. When stress-induced birefringence is considered, A
can be calculated according to the conventional formula.

Now the electric-field components E,, and E, can be
investigated in the general case. The analysis is ho-
mologous to the method used in analyzing the twisted
linear birefringent fibers.

Two coordinate systems are used to discuss twisted
linear birefringent fibers. The first is a fixed orthogonal
system x, y, z with the corresponding unit vectors being
a,, a,, and a,. The Maxwell equations in this system have
a simple form. The second is a rotating nonorthogonal
system x’, y’, z with its unit vectors a,. and a, parallel to
the axes of the local elliptical cross section of the fiber. In
the latter system, the Maxwell equations tend to be quite
tedious due to the nonorthogonality of the system. The
coordinates x’ and y’ rotate with a twist rate a with
respect to the coordinates x and y along the propagation
distance z [8]. The transverse field E, at a point of distance
z in the fiber can be split into two components parallel to
a, and a, at that point (as shown in Fig. 3)

E,=Ea.,t+Ea,=E.a.+E,a, (39)
Eel_ [ cosaz sinaz] E, (40)
E, —sinaz cosaz]|E,

These two components propagate a small distance Az
along z with the two different propagation constants of the
linear birefringent fiber in the coordinate system x, y, z;
then they should be transformed back to the components
of the x and y system. Here, a plane-wave approximation
is used because of the weakly-guiding wave.

Now two coordinate systems are used in helically-wound
optical fibers. The first is Tang’s orthogonal coordinate
system m, p, s. The Maxwell equations and the scalar field
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Fig. 3. Fixed and rotated coordinate systems of a twisted optical fiber.

wave equations in this coordinate system have a simple
form. The second is the fixed nonorthogonal system 7, b, s.
The Maxwell equations in the latter system will be quite

. tedious. The coordinates » and b rotate with a rotation

rate + with respect to the coordinates m and p along the
propagation distance s. The transverse field E, at a point
of distance s in the fiber can be split into two components
parallel to a,, and a, at that point

E,=A,E,a,+AEa,=AFE"a,+4,Ela, (41)
An _ COS’LP "'Sinlll Am (42)
A, | | siny cosy [ 4, |

These two components propagate a distance As along s
with the two propagation constants of the eigenpolariza-
tion modes in bending linear birefringent fiber in the
Tang’s coordinate system m, p,s; then they should be
transformed back to the components of the m and p
system. Here, an approximation of the first-order field
amplitude is used. However, the second-order difference
between two propagation constants has been taken into
account, so we have

dlA, | cosy siny B, 0
ds| 4, T 7| —sin¢ cosy|{ 0 B,
cosy —siny || 4
X[sinx{z COS¢]{AP . (43)

Using (42), (43) becomes
dA,/ds=— jB,A, + 14,
dA,/ds = — jB,A,—T4,. (44)

Solutions of (44) can be obtained straightforwardly by the
Laplace transform [9]

A,(s)= [fCOS(TS/F1/2)+ FY2(jfAB/27 + g)
sin(7s/F*/?)] exp(— jBys) (45)

A,(s)=[gcos(rs/F/?)— F'*(jgAB/27 + f)
-sin(7s/FY?)] exp(— jBys) (46)

where

f=A,l _ g=4,l _ F=[1+(ap20)]"
v=0

Bu=(B,+B,)/2.

s=0
v=0
(47)
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If AB< 7, the above field components represent a
quasi-linear state of polarization, while its orientation
rotates with a rotation rate close to — = with respect to the
Serret—Frenet frame.

The solutions (45) and (46) can be used directly to give
the state of polarization (SOP) P, or the polarization
ellipticity of a polarized wave at the output end of the fiber

I max I

P = ﬁ ='cos{Sin[(— ABF? T)Sin(TS/Fl/z)

-(sin2¢ cos(rs/F1/?)
— FY2cos2gsin (7s/F?)]}

(48)
where I .. and I, are the maximum and minimum
intensities passing through an analyzer whose direction can
be adjusted, and ¢ is the input polarization angle with
respect to the Serret-Frenet frame [10].

When
¢ =¢+m/2 (49)
there is
- P(¢)=P(p). (50)
It proves that P relates to the inpuf. polarization angles.
When the input polarized angle ¢ changes, P changes
periodically with a period 7/2 at a fixed distance s. This i<
in agreement with the experimental results of [1]. ..z the
ellipticity of the output wave is very close to 1, we call it
quasi-linear polarization. In fact, from (48), it can be seen
that for a small AB, P approaches 1.

IV. CoNcCLUSION

A perturbation method is used to solve the Maxwell
equations in Tang’s coordinate system. The first-order field
deformation and the second-order corrections of the prop-
agation constants in single-mode helically-wound optical
fibers are obtained. The theoretical analysis proves that the
field in the fibers maintains a quasi-linear state of polariza-
tion, while the orientation of the polarization rotates with a
rotation rate close to — 1 with respect to the Serret—Frenet
frame. The state of polarization periodically changes
according to the incident polarized angles with a period
/2 at a fixed distance s. Our results have been verified by
the experimental results of [1].
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